- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱锥D-ABC中,
底面ABC,
为正三角形,若
,
,则三棱锥D-ABC与三棱锥E-ABC的公共部分构成的几何体的外接球的体积为( )






A.![]() | B.![]() | C.![]() | D.![]() |
已知某款冰淇淋的包装盒为圆台,盒盖为直径为
的圆形纸片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一个,假定每个冰淇淋球都是半径为
的球体,三个冰淇淋球两两相切,且都与冰淇淋盒盖、盒底和盒子侧面的曲面相切,则冰淇淋盒的体积为______.


已知底面边长为a的正三棱柱
(底面是等边三角形的直三棱柱)的六个顶点在球
上,且球
与此正三棱柱的5个面都相切,则球
与球
的表面积之比为________.




