- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 球的体积的有关计算
- 球的表面积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知三棱锥
的所有棱长都相等,现沿
三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为
,则三棱锥
的内切球的体积为 .




圆锥
(其中
为顶点,
为底面圆心)的侧面积与底面积的比是
,则圆锥
与它的外接球(即顶点在球面上且底面圆周也在球面上)的体积比为__________.





如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
为圆
上的点,
分别是以
为底边的等腰三角形.沿虚线剪开后,分别以
为折痕折起
,使得
重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.











如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋(球的直径和圆锥直径相同),如果冰淇淋融化了,是否会溢出杯子,_______(请在“是”和“否”两个判断词中选填一个).

如图,某甜品创作一种冰淇淋,其上半部分呈半球形,下半部分呈圆锥形,现把半径为
的圆形蛋皮等分成5个扇形,用一个扇形蛋皮固成圆锥的侧面(蛋皮厚度忽略不计).
(1)这种蛋筒的表面积;
(2)若要制作500个这样的蛋筒,需要多少升冰淇淋?(精确到0.1L)

(1)这种蛋筒的表面积;
(2)若要制作500个这样的蛋筒,需要多少升冰淇淋?(精确到0.1L)
