- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体的结构
- 空间几何体的三视图和直观图
- + 空间几何体的表面积与体积
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥P﹣ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=
120°,∠PBC=90°.

(Ⅰ)求证:直线DA⊥平面PAB;
(Ⅱ)求三棱锥B﹣PAC的体积.
120°,∠PBC=90°.

(Ⅰ)求证:直线DA⊥平面PAB;
(Ⅱ)求三棱锥B﹣PAC的体积.
如图,已知正六棱柱的最大对角面的面积为1m2,互相平行的两个侧面的距离为1m,则这个六棱柱的体积为( )


A.![]() | B.![]() | C.1m3 | D.![]() |
已知A,B,C,D均在球O的球面上,AB=BC=1,AC=
,若三棱锥D﹣ABC体积的最大值是
.则球O的表面积为( )


A.![]() | B.![]() | C.![]() | D.6π |
如图,梯形ABCD所在平面与以AB为直径的圆所在平面垂直,O为圆心,AB∥CD,∠BAD=90°,AB=2CD.若点P是⊙O上不同于A,B的任意一点.

(Ⅰ)求证:BP⊥平面APD;
(Ⅱ)设平面BPC与平面OPD的交线为直线l,判断直线BC与直线l的位置关系,并加以证明;
(Ⅲ)求几何体DOPA与几何体DCBPO的体积之比.

(Ⅰ)求证:BP⊥平面APD;
(Ⅱ)设平面BPC与平面OPD的交线为直线l,判断直线BC与直线l的位置关系,并加以证明;
(Ⅲ)求几何体DOPA与几何体DCBPO的体积之比.
如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.

(1)求证:EF∥平面BCD;
(2)求三棱锥A﹣BCD的体积.

(1)求证:EF∥平面BCD;
(2)求三棱锥A﹣BCD的体积.
如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.

(1)求证:平面ABC1⊥平面A1ACC1;
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.

(1)求证:平面ABC1⊥平面A1ACC1;
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.