- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为迎接2018年省运会,宁德市某体育馆需要重新铺设塑胶跑道.已知每毫米厚的跑道的铺设成本为10万元,跑道平均每年的维护费C(单位:万元)与跑道厚度x(单位:毫米)的关系为C(x)=
,x∈[10,15].若跑道厚度为10毫米,则平均每年的维护费需要9万元.设总费用f(x)为跑道铺设费用与10年维护费之和.
(1)求k的值与总费用f(x)的表达式;
(2)塑胶跑道铺设多厚时,总费用f(x)最小,并求最小值.

(1)求k的值与总费用f(x)的表达式;
(2)塑胶跑道铺设多厚时,总费用f(x)最小,并求最小值.
关于x的方程9x+3x·a+a+3=0有实根,则a的取值范围是( )
A.(-∞,-3] | B.(-∞,-2] | C.(-∞-2]![]() | D.(-∞,0) |
某城市要建造一个边长为
的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过对边
上一点
的区域
内作一次函数
的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.

(1)写出函数关系式
;
(2)设点
的横坐标为
,将四边形
的面积
表示成关于
的函数
,并求
的最大值.




















(1)写出函数关系式

(2)设点







某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足
.已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完.
(1)将2017年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)

(1)将2017年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)
某企业开发一种新产品,现准备投入适当的广告费对产品进行促销,在一年内,预计年销量
(万件)与广告费
(万元)之间的函数关系为
,已知生产此产品的年固定投入为
万元,每生产
万件此产品仍需要投入
万元,若年销售额为“年生产成本的
”与“年广告费的
”之和,而当年产销量相等:
(1)试将年利润
(万元)表示为年广告费
(万元)的函数;
(2)求当年广告费投入多少万元时,企业利润最大?








(1)试将年利润


(2)求当年广告费投入多少万元时,企业利润最大?
为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品,已知该单位每月都有处理量,且处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?



已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1万部还需要另外投入16美元,设苹果公司一年内共生产该款iphone手机
万部并全部销售完,每万部的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(万部)的函数解析式;
(2)当年产量为多少万部时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.



(1)写出年利润


(2)当年产量为多少万部时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.
2019年10月1日为庆祝中华人民共和国成立70周年在北京天安门广场举行了盛大的阅兵仪式,共有580台(套)装备、160 余架各型飞机接受检阅。受阅装备均为中国国产现役主战装备,其中包括部分首次公开亮相的新型装备。例如,在无人机作战第三方队中就包括了两型侦察干扰无人机,可以在遥控设备或自备程序控制操纵的情况下执行任务,进行对敌方通讯设施的电磁压制和干扰,甚至压制敌人的防空系统。
某作战部门对某处的战场实施“电磁干扰”实验,据测定,该处的“干扰指数”与无人机干扰源的强度和距离之比成反比,比例系数为常数
.现已知相距36km的
两处配置两架无人机干扰源,其对敌干扰的强度分别为1和
,它们连线段上任意一点C处的干扰指数y等于两机对该处的干扰指数之和,设
.(1)试将y表示为x的函数,指出其定义域;
(2)当
时,试确定“干扰指数”最小时C所处位置.
某作战部门对某处的战场实施“电磁干扰”实验,据测定,该处的“干扰指数”与无人机干扰源的强度和距离之比成反比,比例系数为常数

A.B |


(2)当

经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足
(其中
,a为正常数).已知生产该产品还需投入成本
万元(不含促销费用),产品的销售价格定为
元/件,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?




(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?
某地草场出现火灾,火势正以每分钟
的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后
分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火
,所消耗的灭火材料、劳务津贴等费用为每人每分钟
元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为30元.
(1)设派
名消防队员前去救火,用
分钟将火扑灭,试建立
与
的函数关系式;
(2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)




(1)设派




(2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)