- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数
、
、
,如果存在实数
使得
,那么称
为
、
的生成函数.








(1) 下面给出两组函数,是否分别为
、
的生成函数?并说明理由;
第一组:,
,
第二组:,
,
;
(2) 设,
,
,生成函数
.若不等式
在
上有解,求实数
的取值范围;
(3) 设,
,取
,生成函数
图像的最低点坐标为
.若对于任意正实数
,且
,试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.