刷题首页
题库
高中数学
题干
为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品,已知该单位每月都有处理量,且处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,该单位每月处理量为多少吨时,才能使
每吨
的平均处理成本最低?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-13 08:43:07
答案(点此获取答案解析)
同类题1
围建一个面积为360平方米的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2米的进出口,如图所示,已知旧墙的维修费用为45元/米,新墙的造价为180元/米,设利用的旧墙的长度为
(单位:米),修建围墙的总费用为
(单位:元),试确定
的值,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
同类题2
泉州与福州两地相距约200千米,一辆货车从泉州匀速行驶到福州,规定速度不得超过
千米/时,已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
千米/时的平方成正比,比例系数为0.01;固定部分为64元.
(1)把全程运输成本
元表示为速度
千米/时的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度行驶?
同类题3
近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为59万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
同类题4
某城市旅游资源丰富,经调查,在过去的一个月内(以30天计),第t天的旅游人数
(万人)近似地满足
,而人均消费
(元)近似地满足
.
(1)求该城市的旅游日收益
(万元)与时间
(
,
)的函数关系式;
(2)求该城市旅游日收益的最小值.
同类题5
一批救灾物资随17列火车以
vkm
/
h
的速度匀速直达400
km
以外的灾区,为了安全起见,两列火车的间距不得小于
,求这批物资全部运送到灾区最少需要多少小时(不考虑火车自身长度)
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
基本不等式求和的最小值