- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设
米,试问
取何值时,运动场所面积最大?



某厂家拟举行双十一促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m万件与年促销费用x万元(
)满足
.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将该产品的年利润y万元表示为年促销费用x万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?


(1)将该产品的年利润y万元表示为年促销费用x万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?
为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系式可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为300元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?



(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
如图,
为信号源点,
、
、
是三个居民区,已知
、
都在
的正东方向上,
,
,
在
的北偏西45°方向上,
,现要经过点
铺设一条总光缆直线
(
在直线
的上方),并从
、
、
分别铺设三条最短分支光缆连接到总光缆
,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/
,设
,(
),铺设三条分支光缆的总费用为
(元).

(1)求
关于
的函数表达式;
(2)求
的最小值及此时
的值.

























(1)求


(2)求


如图1,一个铝合金窗是由一个框架和部分外推窗框组成,其中框架设计如图2,其结构为上、下两栏,下栏为两个完全相同的矩形,四周框架和中间隔栏的材料为铝合金,宽均为
,上栏和下栏的框内矩形高度(不含铝合金部分)比为
,此铝合金窗占用的墙面面积为
,设该铝合金窗的宽和高分别
,
,铝合金的透光部分的面积为
(外推窗框遮挡光线部分忽略不计).

(1)试用
,
表示
;
(2)若要使
最大,则铝合金窗的宽和高分别为多少?







(1)试用



(2)若要使

如图,已知矩形花坛ABCD中,
米,
米,现要将小矩形花坛扩建成大型直角三角形花坛AMN,使点B在AM上,点D在AN上,且斜边MN过点
求直角三角形NDC与直角三角形MBC面积之和的最小值.


A. |

围建一个面积为
的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需要维修),其他三面围墙要新建,在旧墙对面的新墙上要留下一个宽度为
的出口,如图所示,已知旧墙的维修费为45元/m,新墙的造价为180元/m,设利用的旧墙长度为
(单位:
),修此矩形场地围墙的总费用为
(单位:元)

(1)将
表示为
的函数;
(2)试确定
,使修建此矩形场地围墙的总费用最小,并求出最小总费用.






(1)将


(2)试确定

物联网(Internet of Things,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络. 其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景. 现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费
(单位:万元),仓库到车站的距离
(单位:千米,
),其中
与
成反比,每月库存货物费
(单位:万元)与
成正比;若在距离车站9千米处建仓库,则
和
分别为2万元和7. 2万元. 这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?









如图,某地要在矩形区域
内建造三角形池塘
,
、
分别在
、
边上.
米,
米,
,设
,
.

(1)试用解析式将
表示成
的函数;
(2)求三角形池塘
面积
的最小值及此时
的值.












(1)试用解析式将


(2)求三角形池塘


