- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式与二次函数、一元二次方程的关系
- 一元二次不等式在实数集上恒成立问题
- + 一元二次不等式在某区间上的恒成立问题
- 一元二次不等式在某区间上有解问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在R上的奇函数f(x)=
(a>0,且a≠1).
(Ⅰ)求k的值;
(Ⅱ)当m∈[0,1],n∈[-1,0]时,不等式f(2n2-m+t)+f(2n-mn2)>0恒成立,求t的取值范围.

(Ⅰ)求k的值;
(Ⅱ)当m∈[0,1],n∈[-1,0]时,不等式f(2n2-m+t)+f(2n-mn2)>0恒成立,求t的取值范围.
给定函数
,若对于定义域中的任意
,都有
恒成立,则称函数
为“爬坡函数”.
(Ⅰ)证明:函数
是“爬坡函数”;
(Ⅱ)若函数
是“爬坡函数”,求实数
的取值范围;
(Ⅲ)若对任意的实数
,函数
都不是“爬坡函数”,求实数
的取值范围.





(Ⅰ)证明:函数

(Ⅱ)若函数


(Ⅲ)若对任意的实数



设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(1)求f(x)的最小值h(t);
(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
(1)求f(x)的最小值h(t);
(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.