- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- + 数列的综合应用
- 数列-单利
- 数列-复利
- 数列-分期付款
- 数列-产值增长
- 数列-养老保险
- 数列-浓度匹配
- 数列-其他模型
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设数列
是集合
且
中所有的数从小到大排列成的数列,即
,
,
,
,
,
,
,将数列
中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则
的值为________













某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
某地政府为改善居民的住房条件,集中建设一批经适楼房.用了1400万元购买了一块空地,规划建设8幢楼,要求每幢楼的面积和层数等都一致,已知该经适房每幢楼每层建筑面积均为250平方米,第一层建筑费用是每平方米3000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加80元.
(1)若该经适楼房每幢楼共
层,总开发费用为
万元,求函数
的表达式(总开发费用=总建筑费用+购地费用);
(2)要使该批经适房的每平方米的平均开发费用最低,每幢楼应建多少层?
(1)若该经适楼房每幢楼共



(2)要使该批经适房的每平方米的平均开发费用最低,每幢楼应建多少层?
2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长
.记 2016 年为第 1 年,
为第 1 年至此后第
年的累计利润(注:含第
年,累计利润=累计净收入﹣累计投入,单位:千万元),且当
为正值时,认为该项目赢利.
(1)试求
的表达式;
(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.





(1)试求

(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.
在一次人才招聘会上,有
、
两家公司分别开出了他们的工资标准:
公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;
公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增
,设某人年初被
、
两家公司同时录取,试问:
(1)若该人分别在
公司或
公司连续工作
年,则他在第
年的月工资分别是多少;
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?







(1)若该人分别在




(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?
已知数列
的前
项和为
,且
(
)求数列
的通项公式;
(
)若数列
满足
,求数列
的通项公式;
(
)在(
)的条件下,设
,问是否存在实数
使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,请说明理由.




(


(




(





