- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
中,
.
(1)求证数列
不是等比数列,并求该数列的通项公式;
(2)求数列
的前
项和
;
(3)设数列
的前
项和为
,若
对任意
恒成立,求
的最小值.


(1)求证数列

(2)求数列



(3)设数列






数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t (t>0,n=2,3,4,…).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,
(n=2,3,4,…).求数列{bn}的通项bn;
(3)求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2n·b2n+1.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,

(3)求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2n·b2n+1.