- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(﹣1)nlnan,求数列{bn}的前2n项和S2n.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(﹣1)nlnan,求数列{bn}的前2n项和S2n.
已知数列{an}及等差数列{bn},若a1=3,
(n≥2),a1=b2,2a3+a2=b4,
(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{an•bn}的前n项和为Tn,求Tn.

(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{an•bn}的前n项和为Tn,求Tn.
已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1,且a4与2a7的等差中项为
,则S6= ( ).

A.35 | B.33 | C.31 | D.![]() |
等比数列{an}的前n项和公式Sn,若2S4=S5+S6,则数列{an}的公比q的值为 ( ).
A.-2或1 | B.-1或 2 | C.-2 | D.1 |