- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的前
项和为
,且
(
).
(1)求
的通项公式;
(2)设
,
,
是数列
的前
项和,求正整数
,使得对任意
均有
恒成立;
(3)设
,
是数列
的前
项和,若对任意
均有
恒成立,求
的最小值.





(1)求

(2)设








(3)设







现有正整数构成的数表如下:
第一行:1
第二行:1 2
第三行:1 1 2 3
第四行:1 1 2 1 1 2 3 4
第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5
…… …… ……
第
行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,...,直至按原序抄写第
行,最后添上数
.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).
将按照上述方式写下的第
个数记作
(如
)
(1)用
表示数表第
行的数的个数,求数列
的前
项和
;
(2)第8行中的数是否超过73个?若是,用
表示第8行中的第73个数,试求
和
的值;若不是,请说明理由;
(3)令
,求
的值.
第一行:1
第二行:1 2
第三行:1 1 2 3
第四行:1 1 2 1 1 2 3 4
第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5
…… …… ……
第



将按照上述方式写下的第




(1)用





(2)第8行中的数是否超过73个?若是,用



(3)令

