- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知递增的等比数列{an}的前n项和为Sn,a6=64,且a4,a5的等差中项为3a3.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设bn=

已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn;
(2)求
+
+…+
.
(1)求an与bn;
(2)求



已知数列
的前n项的和Sn,点(n,Sn)在函数
=2x2+4x图象上:
(1)证明
是等差数列;
(2)若函数
,数列{bn}满足bn=
,记cn=an•bn,求数列
前n项和Tn;
(3)是否存在实数λ,使得当x≤λ时,f(x)=﹣x2+4x﹣
≤0对任意n∈N*恒成立?若存在,求出最大的实数λ,若不存在,说明理由.


(1)证明

(2)若函数



(3)是否存在实数λ,使得当x≤λ时,f(x)=﹣x2+4x﹣
