- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- + 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=11.
(1)求{an}和{bn}的通项公式;
(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn
(1)求{an}和{bn}的通项公式;
(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn
若数列
,
满足
,则称
为数列
的“偏差数列”.
(1)若
为常数列,且为
的“偏差数列”,试判断
是否一定为等差数列,并说明理由;
(2)若无穷数列
是各项均为正整数的等比数列,且
,
为数列
的“偏差数列”,求
的值;
(3)设
,
为数列
的“偏差数列”,
,
且
若
对任意
恒成立,求实数
的最小值.





(1)若



(2)若无穷数列





(3)设









已知数列
的前
项和为
,
,且
(
),数列
满足
,
,对任意
,都有
;
(1)求数列
、
的通项公式;
(2)令
,若对任意的
,不等式
恒成立,求实数
的取值范围;











(1)求数列


(2)令




已知数列
的前
项和为
,对于任意
满足
,且
,数列
满足
,
,其前
项和为
.
(1)求数列
、
的通项公式;
(2)令
,数列
的前
项和为
,求证:对于任意正整数
,都有
;
(3)将数列
、
的项按照“当
为奇数时,
放在前面”,“当
为偶数时,
放在前面”的要求进行“交叉排列”得到一个新的数列:
、
、
、
、
、
、
、
、
求这个新数列的前
项和
.











(1)求数列


(2)令






(3)将数列
















