- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,如果存在一个正整数
,使得对任意的
都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期.例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列.
(1)设数列
满足
,
,
(
、
不同时为
),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列
的前
项和为
,且
.
①若
,试判断数列
是否为周期数列,并说明理由;
②若
,试判断数列
是否为周期数列,并说明理由;
(3)设数列
满足
,
,
,
,数列
的前
项和为
,试问是否存在
、
,使对任意的
都有
成立,若存在,求出
、
的取值范围;不存在, 说明理由.














(1)设数列










(2)设数列




①若


②若


(3)设数列














已知数列
是公比为
的等比数列,且
成等差数列.
(Ⅰ) 求
的值;
(Ⅱ) 设数列
是以2为首项,
为公差的等差数列,其前
项和为
,
试比较
与
的大小.



(Ⅰ) 求

(Ⅱ) 设数列




试比较

