- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- + 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在数列
中,
,且对任意的
,
成等比数列,其公比为
.
(1)若
=2(
),求
;
(2)若对任意的
,
,
,
成等差数列,其公差为
,设
.
①求证:
成等差数列,并指出其公差;
②若
=2,试求数列
的前
项的和
.





(1)若



(2)若对任意的






①求证:

②若




(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)a-1,第二年所交纳的储备金就变为a2(1+r)a-2,……,以Tn表示到第n年末所累计的储备金总额.
(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;
(Ⅱ)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;
(Ⅱ)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
设M为部分正整数组成的集合,数列
的首项
,前n项和为
,已知对任意整数k属于M,当n>k时,
都成立.
(1)设M={1},
,求
的值;
(2)设M={3,4},求数列
的通项公式.




(1)设M={1},


(2)设M={3,4},求数列

已知函数
满足
,对任意
恒成立,在数列
中,
,
,对任意
(1)求函数的解析式
(2) 求数列
的通项公式
(3) 若对任意的实数
,总存在自然数
,当
时,
恒成立,求
的最小值.







(1)求函数的解析式
(2) 求数列

(3) 若对任意的实数





数列
中,
;
,对任意的
为正整数都有
.
(1)求证:
是等差数列;
(2)求出
的通项公式;
(3)若
(
),是否存在实数
使得
对任意的
恒成立?若存在,找出
;若不存在,请说明理由。





(1)求证:

(2)求出

(3)若






(本题满分15分)在数列
中,
,当
时,满足
.
(Ⅰ)求证:数列
是等差数列,并求数列
的通项公式;
(Ⅱ)令
,数列
的前
项和为
,求使得
对所有
都成立的实数
的取值范围.




(Ⅰ)求证:数列


(Ⅱ)令







(本题满分14分)在数列
中,
时,其前
项和
满足:
.
(Ⅰ)求证:数列
是等差数列,并用
表示
;
(Ⅱ)令
,数列
的前
项和为
求使得
对所有
都成立的实数
的取值范围.





(Ⅰ)求证:数列



(Ⅱ)令






