- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
中,
,当
时其前
项和
满足
.
(1)求
的表达式;
(2)若
,求数列
的前
项和
;
(3)在(2)条件下,设
,如果对任意的
,
恒成立,求整数
的最小值.






(1)求

(2)若




(3)在(2)条件下,设




设等差数列{an}中,a2=-8,a6=0.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和Sn.
已知
位数满足下列条件:①各个数字只能从集合
中选取;②若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为
(1)求
;
(2)探究
与
之间的关系,求出数列
的通项公式;
(3)对于每个正整数
,在
与
之间插入
个
得到一个新数列
,设
是数列
的前
项和,试探究
能否成立?写出你探究得到的结论并给出证明.



(1)求

(2)探究



(3)对于每个正整数









