- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等差数列
中,公差
,其前
项和为
,且满足
(1)求数列
的通项公式;
(2)由通项公式
得出的数列
如果也是等差数列,求非零常数
;
(3)求
的最大值。





(1)求数列

(2)由通项公式



(3)求

已知数列
共有
项,满足
,且对任意
、
,有
仍是该数列的某一项,现给出下列
个命题:(1)
;(2)
;(3)数列
是等差数列;(4)集合
中共有
个元素.则其中真命题的个数是( )












A.![]() | B.![]() | C.![]() | D.![]() |
设数列
满足
,
,
,
.s
(1)证明:数列
是等差数列,并求数列
的通项;
(2)求数列
的通项,并求数列
的前
项和
;
(3)若
,且
是单调递增数列,求实数
的取值范围.





(1)证明:数列


(2)求数列




(3)若



某高科技企业研制出一种型号为A的精密数控车床,A型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A型车床所创造价值的第一年).若第 1 年A型车床创造的价值是250万元,且第1年至第6年,每年A型车床创造的价值减少30万元;从第7年开始,每年A型车床创造的价值是上一年价值的 50%.现用
(
)表示A型车床在第n年创造的价值.
(1)求数列
的通项公式
;
(2)记
为数列
的前n项的和
,企业经过成本核算,若
万元,则继续使用A型车床,否则更换A型车床,试问该企业须在第几年年初更换A型车床?(已知:若正数数列
是单调递减数列,则数列
也是单调递减数列).


(1)求数列


(2)记






