- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数
与常数
,若
恒成立,则称
为函数
的一个“
数对”;设函数
的定义域为
,且
.
(Ⅰ)若
是
的一个“
数对”,且
,求常数
的值;
(Ⅱ)若
是
的一个“
数对”,求
;
(Ⅲ)若
是
的一个“
数对”,且当
,
,求
的值及
在区间
上的最大值与最小值.









(Ⅰ)若





(Ⅱ)若




(Ⅲ)若








已知函数
的定义域为R,当
时,
,且对任意的实数
R,等式
成立.若数列
满足
,且
(
N*),则
的值为( )










A.4016 | B.4017 | C.4018 | D.4019 |
已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x、y,等式f(x)f(y)=f(x+y)恒成立,若数列{an}满足a1=f(0),且
(n∈N*),则a2011的值为( )

A.4017 | B.4018 | C.4019 | D.4021 |
已知数列
中,
,对任意的
,
,有
.
(1)求数列
的通项公式;
(2)设数列
满足
(
,
),
①求数列
的前
项和
;
②设
是正整数,若存在正数
,对任意的正整数
,当
时,都有
,求m的最大值.





(1)求数列

(2)设数列




①求数列



②设




