- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等差数列及其通项公式
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
中,
,对任意的
,
、
、
成等比数列,公比为
;
、
、
成等差数列,公差为
,且
.
(1)写出数列
的前四项;
(2)设
,求数列
的通项公式;
(3)求数列
的前
项和
.












(1)写出数列

(2)设


(3)求数列



已知数列{an}中,a1=2,an=2-
(n≥2,n∈N*).
(1)设bn=
,n∈N*,求证:数列{bn}是等差数列;
(2)设cn=
(n∈N*),求数列{cn}的前n项和Sn.

(1)设bn=

(2)设cn=
