- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- + 等差数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列
的前n项和为
且满足
(1)求数列
的通项公式;
(2)若
求正整数
的值;
(3)是否存在正整数
,使得
恰好为数列
的一项?若存在,求出所有满足条件的正整数
;若不存在,请说明理由.




(1)求数列

(2)若


(3)是否存在正整数




如果数列
满足
=1,当
为奇数时,
;为偶数时,
,则下列结论成立的是( )





A.该数列的奇数项成等比数列,偶数项成等差数列 |
B.该数列的奇数项成等差数列,偶数项成等比数列 |
C.该数列的奇数项各项分别加![]() |
D.该数列的偶数项各项分别加![]() |
设
是数列
的前
项和,对任意
都有
成立(其中
是常数).
(1)当
时,求
:
(2)当
时,
①若
,求数列
的通项公式:
②设数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“
数列”,如果
,试问:是否存在数列
为“
数列”,使得对任意
,都有
,且
,若存在,求数列
的首项
的所有取值构成的集合;若不存在.说明理由.






(1)当


(2)当

①若


②设数列









