- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- + 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
满足
,对任意的
,都有
.
(1)求数列
的递推公式
(2)数列
满足
,求数列
的通项公式;
(3)在(2)的条件下,设
,问是否存在实数
使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,请说明你的理由.




(1)求数列

(2)数列



(3)在(2)的条件下,设




已知a2,a5是方程x2-12x+27=0的两根,数列{an}是递增的等差数列,数列{bn}的前n项和为Sn,且Sn=1-
bn(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)记cn=an·bn,求数列{cn}的前n项和Tn.

(1)求数列{an},{bn}的通项公式;
(2)记cn=an·bn,求数列{cn}的前n项和Tn.
设数列
的各项都是正数,且对于任意
都有
,记
为数列
的前
项和.
(1)计算
的值;
(2)求数列
的通项公式;
(3)设
,若
为单调递增数列,求
的取值范围.






(1)计算

(2)求数列

(3)设


