- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某海警基地码头
的正西方向
海里处有海礁界碑
,过点
且与
成
角(即北偏东
)的直线
为此处的一段领海与公海的分界线(如图所示).在码头
的正西方向且距离
点
海里的领海海面
处有一艘可疑船停留,基地指挥部决定在测定可疑船的行驶方向后,海警巡逻艇从
处即刻出发.若巡逻艇以可疑船的航速的
倍
前去拦截,假定巡逻艇和可疑船在拦截过程中均未改变航向航速,将在点
处截获可疑船.
(1)若可疑船的航速为
海里
小时,
,且可疑船沿北偏西
的方向朝公海逃跑,求巡逻艇成功拦截可疑船所用的时间.
(2)若要确保在领海内(包括分界线)成功拦截可疑船,求
的最小值.
















(1)若可疑船的航速为




(2)若要确保在领海内(包括分界线)成功拦截可疑船,求


C位于A城的南偏西20°的位置,B位于A城的南偏东40°的位置,有一人距C为31千米的B处正沿公路向A城走去,走了20千米后到达D处,此时CD间的距离为21千米,问这人还要走多少千米才能到达A城?
两灯塔A,B与海洋观察站C的距离都等于a(km), 灯塔A在C北偏东30°,B在C南偏东60°,则A,B之间的相距
A.![]() | B.![]() | C.a (km) | D.2a (km) |
某船开始看见灯塔
时,灯塔
在船南偏东
方向,后来船沿南偏东
的方向航行
后,看见灯塔
在船正西方向,则这时船与灯塔
的距离是( )







A.![]() | B.![]() | C.![]() | D.![]() |
张晓华同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是( )


A.2km | B.![]() | C.3km | D.![]() |
如图,设A、B两点在河的两岸,一测量者在A同侧的河岸边选定一点C,测出AC的距离为100m,∠ACB=30°,∠CAB=105°后,就可以计算出A、B两点的距离为( )


A.100![]() | B.100![]() | C.50![]() | D.25![]() |
已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 ( )
A.10 km | B.![]() | C.![]() | D.![]() |