- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正、余弦定理在几何中的应用
- + 正、余弦定理的实际应用
- 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某人在A处向正东方向走
后到达B处,他向右转150°,然后朝新方向走3km到达C处,结果他离出发点恰好
,那么x的值为( )


A.![]() | B.![]() | C.![]() | D.3 |
如图,为了测量山坡上灯塔CD的高度,某人从高为h=40的楼AB的底部A处和楼顶B处分别测得仰角β=60°,α=30°,若山坡高为a=35,则灯塔的高度是( )


A.20 | B.25 | C.![]() | D.30 |
如图,要测量山顶上的电视塔FG的高度,已知山的西面有一栋楼AC(该楼的高度低于山的高度).试设计在楼AC上测山顶电视塔高度的测量、计算方案.

如图所示,A,B是某沼泽地上不便到达的两点,C,D是可到达的两点.已知A,B,C,D,4点都在水平面上,而且已经测得∠ACB=
,∠BCD=30°,∠CDA=
,∠BDA=15°,CD=100m,求AB的长.



如图所示,海中一小岛C周围
nmile内有暗礁,货轮由西向东航行至A处测得小岛C位于北偏东75°方向上,航行8nmile后,于B处测得小岛C在北偏东60°方向上.

(1)如果这艘货轮不改变航向继续前进,有没有触礁的危险?请说明理由.
(2)如果有触礁的危险,这艘货轮在B处改变航向为南偏东α°(α>0)方向航行,顺利绕过暗礁,求a的最大值.(附:
)


(1)如果这艘货轮不改变航向继续前进,有没有触礁的危险?请说明理由.
(2)如果有触礁的危险,这艘货轮在B处改变航向为南偏东α°(α>0)方向航行,顺利绕过暗礁,求a的最大值.(附:
