- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正、余弦定理在几何中的应用
- + 正、余弦定理的实际应用
- 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天10:00观察到该航船在A处,此时测得∠ADC=30°,3分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,求船的速度是多少千米/分钟.

一缉私艇在A处发现在北偏东
方向距离12海里的海面上C处有一走私船正以10海里/小时的速度沿东偏南
方向逃窜,缉私艇的速度为14海里/小时.若要在最短的时间内追上该走私船,缉私艇应沿北偏东
的方向去追,求追击所需时间和
角的正弦值.
.





在海岛
上有一座海拔
千米的山,山顶设有一个观察站
,上午
时,测得一轮船在海岛北偏东
,俯角(与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,当目标视线在水平视线的下方时称为俯角)为
的
处,到
时
分又测得该轮船在岛西偏北
,俯角为
的
处
(1)该轮船的航行速度是每小时多少千米?
(2)又经过一段时间后,轮船到达海岛正西方向的
处,此时轮船距岛有多远?












(1)该轮船的航行速度是每小时多少千米?
(2)又经过一段时间后,轮船到达海岛正西方向的


如图所示,要测量河对岸A、B两点间的距离,今沿河岸选取相距40m的C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,求AB的距离.

在某海岸A处,发现北偏东30°方向,距离A处




如图,甲船以每小时
海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于
处时,乙船位于甲船的北偏西
方向的
处,此时两船相距20海里,当甲船航行20分钟到达
处时,乙船航行到甲船的北偏西
方向的
处,此时两船相距
海里,问乙船每小时航行多少海里?









甲船在点A处测得乙船在北偏东60°的B处,并以每小时10海里的速度向正北方向行使,若甲船沿北偏东30°角方向直线航行,并1小时后与乙船在C处相遇,则甲船的航速为_________海里/小时。
如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1)若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?














(1)若规划在三角形




(2) 在(1)的条件下,建直线通道


某沿海四个城市
的位置如图所示,其中
,
,
mile,
mile,
mile,
位于
的北偏东
方向.现在有一艘轮船从
出发向直线航行,一段时间到达
后,轮船收到指令改向城市
直线航行,收到指令时城市
对于轮船的方位角是南偏西
度,则
_________.















