- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 识别正(余)弦型三角函数的图象
- 由图象确定正(余)弦型函数解析式
- + 由正(余)弦函数的性质确定图象(解析式)
- 正、余弦型三角函数图象的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)
取何值时,方程
(
)无解?有一解?有两解?有三解?
(2)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数
的性质,并在此基础上,作出其在
的草图;



(2)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数


已知函数
的 部分图象如图所示:

(1)求
的解析式;
(2)求
的单调区间和对称中心坐标;
(3)将
的图象向左平移
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数
的图象,求函数
在
上的最大值和最小值.


(1)求

(2)求

(3)将





已知函数
,
(其中
,
,
)的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象上一个最高点为
.
(1)求
的解析式;
(2)先把函数
的图象向左平移
个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,试写出函数
的解析式.
(3)在(2)的条件下,若存在
,使得不等式
成立,求实数
的最小值.








(1)求

(2)先把函数




(3)在(2)的条件下,若存在



函数
的最大值为3,其图象相邻两条对称轴之间的距离为
.

(Ⅰ)求函数
的解析式和当
时
的单调减区间;
(Ⅱ)
的图象向右平行移动
个长度单位,再向下平移1个长度单位,得到
的图象,用“五点法”作出
在
内的大致图象.



(Ⅰ)求函数



(Ⅱ)




