刷题首页
题库
高中数学
题干
已知正四棱锥
中,
,那么当该棱锥的体积最大时,它的高为__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-11-16 12:00:37
答案(点此获取答案解析)
同类题1
某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高
为
,储粮仓的体积为
.
(1)求
关于
的函数关系式;(圆周率用
表示)
(2)求
为何值时,储粮仓的体积最大.
同类题2
在半径为
r
的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为
A.
B.
r
C.
r
D.
r
同类题3
如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )
A.
B.
C.
D.
同类题4
以长为10的线段AB为直径作半圆,则它的内接矩形面积的最大值为( )
A.10
B.15
C.25
D.50
同类题5
现有一张长为
,宽为
(
)的长方形铁皮
,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形
的一个角上剪下一块边长为
的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼后作为铁皮容器的侧面,设长方体的高为
,体积为
.
(Ⅰ)求
关于
的函数关系式;
(Ⅱ)求该铁皮容器体积
的最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题