刷题首页
题库
高中数学
题干
在四面体ABCD中,若
,则四面体ABCD体积的最大值是
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-04-14 12:09:54
答案(点此获取答案解析)
同类题1
如图,在圆锥
中,底面半径
为
,母线长
为
.用一个平行于底面的平面去截圆锥,截面圆的圆心为
,半径为
,现要以截面为底面,圆锥底面圆心
为顶点挖去一个倒立的小圆锥
,记圆锥
体积为
.
(1)将
表示成
的函数;
(2)求
的最大值.
同类题2
在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板
ABCD
,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为
x
厘米,矩形纸板的两边
AB
,
BC
的长分别为
a
厘米和
b
厘米,其中
a
≥
b
.
(1)当
a
=90时,求纸盒侧面积的最大值;
(2)试确定
a
,
b
,
x
的值,使得纸盒的体积最大,并求出最大值.
同类题3
用边长为
的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,当铁盒的容积最大时,截去的小正方形的边长为( )
A.
B.
C.
D.
同类题4
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
同类题5
过函数
的图象
上一点
作倾斜角互补的两条直线,分别与
交与异于
的
,
两点.
(1)求证:直线
的斜率为定值;
(2)如果
,
两点的横坐标均不大于0,求
面积的最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题