刷题首页
题库
高中数学
题干
国务院批准从2009年起,将每年8月8日设置为“全民健身日”,为响应国家号召,各地利用已有土地资源建设健身场所.如图,有一个长方形地块
,边
为
,
为
.地块的一角是草坪(图中阴影部分),其边缘线
是以直线
为对称轴,以
为顶点的抛物线的一部分.现要铺设一条过边缘线
上一点
的直线型隔离带
,
,
分别在边
,
上(隔离带不能穿越草坪,且占地面积忽略不计),将隔离出的
作为健身场所.则
的面积为
的最大值为
____________
(单位:
).
上一题
下一题
0.99难度 填空题 更新时间:2018-11-06 09:17:24
答案(点此获取答案解析)
同类题1
将2张边长均为1分米的正方形纸片分别按甲、乙两种方式剪裁并废弃阴影部分.
(1)在图甲的方式下,剩余部分恰能完全覆盖某圆锥的表面,求该圆锥的母线长及底面
半径;
(2)在图乙的方式下,剩余部分能完全覆盖一个长方体的表面,求长方体体积的最大值.
同类题2
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中
=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;
(1)求方案一中养殖区的面积S
1
;
(2)求证:方案二中养殖区的最大面积S
2
=
;
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
同类题3
要设计一个容积为
的有盖圆柱形容器,已知侧面的单位面积造价是底面单位面积造假的一半,而盖的单位面积造价是侧面单位面积的造价一半,问容器的底面半径
与高
之比为何值时,总造价最低.
同类题4
(山东省济南2018届二模)已知点
均在表面积为
的球面上,其中
平面
,
,
,则三棱锥
的体积的最大值为( )
A.
B.
C.
D.
同类题5
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=
.
(1)记市民活动广场及停车场的占地总面积为
,求
的表达式;
(2)当cos
为何值时,可使市民活动广场及停车场的占地总面积最大.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题