- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- + 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称为g(x)为函数f(x)的一个承托函数,给出如下命题:
(1)定义域和值域都是R的函数f(x)不存在承托函数;
(2)g(x)=2x为函数f(x)=2x的一个承托函数;
(3)g(x)=ex为函数f(x)=ex的一个承托函数;
(4)函数
,若函数g(x)的图象恰为f(x)在点
处的切线,则g(x)为函数f(x)的一个承托函数.其中正确的命题的个数是( )
(1)定义域和值域都是R的函数f(x)不存在承托函数;
(2)g(x)=2x为函数f(x)=2x的一个承托函数;
(3)g(x)=ex为函数f(x)=ex的一个承托函数;
(4)函数


A.0 | B.1 | C.2 | D.3 |