- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某地有三家工厂,分别位于矩形ABCD的顶点A,B以及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在矩形ABCD内(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为
km.

(I)设
,将
表示成
的函数关系式;
(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.


(I)设



(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.
把一段底面直径为40厘米的圆柱形木料据成横截面为矩形的木料,该矩形的一条边长是
厘米,另一条边长是
厘米.
(1)试用解析式将
表示成
的函数,并写出函数的定义域;
(2)若该圆柱形木料长为100厘米,则怎样据才能使矩形木料的体积最大?并求出体积的最大值.


(1)试用解析式将


(2)若该圆柱形木料长为100厘米,则怎样据才能使矩形木料的体积最大?并求出体积的最大值.
有两个相同的直三棱柱,高为
,底面三角形的三边长分别为
。用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则
的取值范围是_________


