刷题首页
题库
高中数学
题干
有两个相同的直三棱柱,高为
,底面三角形的三边长分别为
。用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则
的取值范围是_________
上一题
下一题
0.99难度 填空题 更新时间:2019-11-15 10:45:16
答案(点此获取答案解析)
同类题1
在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板
ABCD
,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为
x
厘米,矩形纸板的两边
AB
,
BC
的长分别为
a
厘米和
b
厘米,其中
a
≥
b
.
(1)当
a
=90时,求纸盒侧面积的最大值;
(2)试确定
a
,
b
,
x
的值,使得纸盒的体积最大,并求出最大值.
同类题2
要制作一个容积为2π m
3
的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为 (
)
A.0
.
5 m,1 m
B.1 m,1 m
C.1 m,2 m
D.2 m,2 m
同类题3
已知球O的直径长为12,当它的内接正四棱锥的体积最大时,则该四棱锥的高为________.
同类题4
如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
为圆
上的点,
分别是以
为底边的等腰三角形,沿虚线剪开后,分别以
为折痕折起
,使
重合得到一个四棱锥,则该四棱锥的体积的最大值为_______.
同类题5
用一个半径为
的钢质球通过切削加工成一个正六棱柱,为了充分利用材料,要使加工的正六棱柱体积最大,则最大体积为_____________.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
棱柱的结构特征和分类