- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
为常数且
.
(1)当
时,求曲线
在点
处的切线方程;
(2)讨论函数
的单调性;
(3)当
时,
,若存在
,使
成立,求实数
的取值范围.



(1)当



(2)讨论函数

(3)当





已知函数
.

(1)如图,设直线
将坐标平面分成
四个区域(不含边界),若函数
的图象恰好位于其中一个区域内,判断其所在的区域并求对应的
的取值范围;
(2)当
时,求证:
且
,有
.


(1)如图,设直线




(2)当




已知
,函数
.
(I)当
为何值时,
取得最大值?证明你的结论;
(II) 设
在
上是单调函数,求
的取值范围;
(III)设
,当
时,
恒成立,求
的取值范围.


(I)当


(II) 设



(III)设



