- 集合与常用逻辑用语
- 函数与导数
- 函数极值的辨析
- + 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
表示的曲线过原点,且在
处的切线斜率均为
,有以下命题:
①
的解析式为
;
②
的极值点有且仅有一个;
③
的最大值与最小值之和等于零.
其中正确的命题个数为 ( )




①


②

③

其中正确的命题个数为 ( )
A.0个 | B.1个 | C.2个 | D.3个 |
设f(x)=ax3+bx+c为奇函数其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f/(x)的最小值为-12
(1)求a,b,c的值
(2)求函数极大值和极小值.
(1)求a,b,c的值
(2)求函数极大值和极小值.
已知函数f(x)=-
x3+2ax2-3a2x(a∈R且a≠0).
(1)当a=-1时,求曲线y=f(x)在点(-2,f(-2))处的切线方程;
(2)当a>0时,求函数y=f(x)的单调区间和极值;
(3)当x∈[2a,2a+2]时,不等式|f′(x)|≤3a恒成立,求a的取值范围.

(1)当a=-1时,求曲线y=f(x)在点(-2,f(-2))处的切线方程;
(2)当a>0时,求函数y=f(x)的单调区间和极值;
(3)当x∈[2a,2a+2]时,不等式|f′(x)|≤3a恒成立,求a的取值范围.
已知函数f(x)=ex+2(x2-3).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数y=f(x)的极值.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数y=f(x)的极值.