- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x)=ax3+bx2+cx的图象如图所示,且f(x)在x=x0与x=-1处取得极值,给出下列判断:

①f(1)+f(-1)=0; ②f(-2)>0;
③函数y=f'(x)在区间(-
,0)上是增函数. 其中正确的判断是_________. (写出所有正确判断的序号)

①f(1)+f(-1)=0; ②f(-2)>0;
③函数y=f'(x)在区间(-

已知函数
,其中
;
(Ⅰ)若函数
在
处取得极值,求实数
的值,
(Ⅱ)在(Ⅰ)的结论下,若关于
的不等式
,当
时恒成立,求
的值.
(Ⅲ)令
,若关于
的方程
在
内至少有两个解,求出实数
的取值范围.


(Ⅰ)若函数



(Ⅱ)在(Ⅰ)的结论下,若关于




(Ⅲ)令




