刷题首页
题库
高中数学
题干
已知函数
,其中
;
(Ⅰ)若函数
在
处取得极值,求实数
的值,
(Ⅱ)在(Ⅰ)的结论下,若关于
的不等式
,当
时恒成立,求
的值.
(Ⅲ)令
,若关于
的方程
在
内至少有两个解,求出实数
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-25 10:08:41
答案(点此获取答案解析)
同类题1
已知函数
,当
时,
取得极小值
.
(1)求
的值;
(2)记
,设
是方程
的实数根,若对于
定义域中任意的
,
.当
且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(3)设直线
,曲线
.若直线
与曲线
同时满足下列条件:
①直线
与曲线
相切且至少有两个切点;
②对任意
都有
.则称直线
与曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.
同类题2
若函数
在区间
上有极值点,则实数
的取值范围是( )
A.
B.
C.
D.
同类题3
已知函数
(
是自然对数的底数)
(1)若直线
为曲线
的一条切线,求实数
的值;
(2)若函数
在区间
上为单调函数,求实数
的取值范围;
(3)设
,若
在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数
的取值范围.
同类题4
已知函数
在点
处取得极小值-5,其导函数
的图象经过点(0,0),(2,0).
(1)求
的值;
(2)求
及函数
的表达式.
同类题5
若函数
没有极值,则( )
A.
B.
C.
D.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的极值
根据极值求参数
利用导数研究不等式恒成立问题