- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=ax-
-4lnx的两个极值点x1,x2满足x1<x2,且1<x2<e,其中e是自然对数的底数;
(1)当a=1时,求x12+x22的值;
(2)求f(x2)-f(x1)的取值范围;

(1)当a=1时,求x12+x22的值;
(2)求f(x2)-f(x1)的取值范围;
已知函数f1(x)=
x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
,e)内有两个零点,求正实数a的取值范围;
(3)求证:当x>0时,
.(说明:e是自然对数的底数,e=2.71828…)

(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(

(3)求证:当x>0时,
