- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是定义在
上的函数,若存在
,使得
在
上单调递增,在
上单调递减,则称
为
上的单峰函数,
称为峰点,包含峰点的区间称为含峰区间;
(1)判断下列函数:①
,②
,哪些是“
上的单峰函数”?若是,指出峰点,若不是,说明理由;
(2)若函数
(
)是
上的单峰函数,求实数a的取值范围;
(3)设
是
上的单峰函数,若m,
),
,且
,求证:
为
的含峰区间.









(1)判断下列函数:①



(2)若函数



(3)设







某造船公司年造船量是20艘,已知造船
艘的产值函数为
(单位:万元),成本函数为
(单位:万元),又在经济学中,函数
的边际函数
定义为
.
(Ⅰ)求利润函数
及边际利润函数
;(提示:利润=产值-成本)
(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?
(Ⅲ)求边际利润函数
单调递减时
的取值范围.






(Ⅰ)求利润函数


(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?
(Ⅲ)求边际利润函数

