刷题首页
题库
高中数学
题干
某造船公司年造船量是20艘,已知造船
艘的产值函数为
(单位:万元),成本函数为
(单位:万元),又在经济学中,函数
的边际函数
定义为
.
(Ⅰ)求利润函数
及边际利润函数
;(提示:利润=产值-成本)
(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?
(Ⅲ)求边际利润函数
单调递减时
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2011-04-13 11:29:23
答案(点此获取答案解析)
同类题1
如图,已知△
的周长为
,在
、
上分别取点
、
,使
∥
,且与△
的内切圆相切,则
的最大值为( )
A.
B.
C.
D.
同类题2
小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量
(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
同类题3
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1 200元,每件衬衫要降价多少元?
(2)每件衬衫降价多少元时,商场平均每天盈利最多?
同类题4
如图所示,在矩形
中,已知
,
(
,在
、
、
、
上分别截取
、
、
、
都等于
,当
为何值时,四边形
的面积最大?求出这个最大面积.
同类题5
假设国家收购某种农产品的价格是1.2元/kg,其中征税标准为每100元征8元(即税率为8个百分点,8%),计划可收购
kg.为了减轻农民负担,决定税率降低
个百分点,预计收购可增加
个百分点.
(1)写出税收
(元)与
的函数关系;
(2)要使此项税收在税率调节后不低于原计划的78%,确定
的取值范围.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
利用给定函数模型解决实际问题