- 集合与常用逻辑用语
- 函数与导数
- + 利用导数研究函数的单调性
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(A)设函数
,
.
(1)证明:函数
在
上为增函数;
(2)若方程
有且只有两个不同的实数根,求实数
的值.
(B)已知函数
.
(1)求函数
的最小值;
(2)若存在唯一实数
,使得
成立,求实数
的值.


(1)证明:函数


(2)若方程


(B)已知函数

(1)求函数

(2)若存在唯一实数



已知函数
.
(1)当
时,求
的单调区间;
(2)设
是曲线
图象上的两个相异的点,若直线
的斜率
恒成立,求实数
的取值范围;
(3)设函数
有两个极值点
且
,若
恒成立,求实数
的取值范围.

(1)当


(2)设





(3)设函数





若定义在
上的函数
对任意两个不等的实数
都有
,则称函数
为“
函数”.给出下列四个定义在
的函数:①
;②
;③
;④
,其中“
函数”对应的序号为__________.











