- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为-1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.
(1)若函数y=f(x)的零点为-1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.
已知a,b是实数,函数f(x)=x|x﹣a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函数f(x)在[﹣4,5]上恒有三个零点,求b的取值范围.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函数f(x)在[﹣4,5]上恒有三个零点,求b的取值范围.
已知定义在R上的函数f(x)满足:f(x)=
且f(x+2)=f(x),g(x)=
,则方程f(x)=g(x)在区间
上的所有实根之和为()



A.﹣8 | B.﹣7 | C.﹣6 | D.0 |
植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:

方案① 多边形为直角三角形
(
),如图1所示,其中
;
方案② 多边形为等腰梯形
(
),如图2所示,其中
.
请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.

方案① 多边形为直角三角形



方案② 多边形为等腰梯形



请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.
设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:
①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为( )
①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为( )
A.0 | B.1 | C.2 | D.3 |
已知函数f(x)=
为偶函数,方程f(x)=m有四个不同的实数解,则实数m的取值范围是( )

A.(﹣3,﹣1) | B.(﹣2,﹣1) | C.(﹣1,0) | D.(1,2) |