- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=
;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b
(a,b为实常数).
(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.


(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.
图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低? 


(1)求屋顶面积S关于

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当


如图,已知
,
两镇分别位于东西湖岸
的
处和湖中小岛的
处,点
在
的正西方向
处,
,
,现计划铺设一条电缆联通
,
两镇,有两种铺设方案:①沿线段
在水下铺设;②在湖岸
上选一点
,先沿线段
在地下铺设,再沿线段
在水下铺设,预算地下、水下的电缆铺设费用分别为2万元
、4万元
.
(1)求
,
两镇间的距离;
(2)应该如何铺设,使总铺设费用最低?



















(1)求


(2)应该如何铺设,使总铺设费用最低?

如图1所示,某地打算在一块长方形地块上修建一个植物园(ABCDEF围成的封闭区域),其中AB长12百米,BC长4百米,
百米,AF长0.5百米,DEF是一段曲线形公路.该植物园的核心区为等腰直角三角形MPQ所示区域,且
,植物园大门位于公路DEF上的M处,音乐广场P位于AB的中点处,为了能够让游客更好地观赏园中的景观,现决定修建一条观光栈道,起点位于距离音乐广场P处2百米的O点所示位置,终点位于美食广场Q处.如图2所示,建立平面直角坐标系,若
满足
.

(1)求
的解析式;
(2)求观光栈道OQ的长度的最小值.





(1)求

(2)求观光栈道OQ的长度的最小值.
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为
,
,山区边界曲线为
,计划修建的公路为
,如图所示,
,
为
的两个端点,测得点
到
,
的距离分别为5千米和40千米,点
到
,
的距离分别为20千米和2.5千米,以
,
在的直线分别为
,
轴,建立平面直角坐标系
,假设曲线
符合函数
(其中
,
为常数)模型.
(1)求
,
的值;
(2)设公路
与曲线
相切于
点,
的横坐标为
.
①请写出公路
长度的函数解析式
,并写出其定义域;
②当
为何值时,公路
的长度最短?求出最短长度.






















(1)求


(2)设公路





①请写出公路


②当



如图,半圆
是某爱国主义教育基地一景点的平面示意图,半径
的长为
百米.为了保护景点,基地管理部门从道路
上选取一点
,修建参观线路
,且
,均与半圆相切,四边形
是等腰梯形,设
百米,记修建每
百米参观线路的费用为
万元,经测算
.


(1)用
表示线段
的长;
(2)求修建参观线路的最低费用.














(1)用


(2)求修建参观线路的最低费用.
函数
和
的图像的示意图如图所示,设两函数的图像交于点
,
,且
.

(1)设曲线
,
分别对应函数
和
,请指出图中曲线
,
对应的函数解析式,若不等式
对任意
恒成立,求
的取值范围;
(2)若
,
,且
、
,求
、
的值.






(1)设曲线









(2)若







如图,
是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,
,且
,
的造价分别为5万元
百米,40万元
百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
,
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求
解析式;
(2)当
为多少时,总造价
最低?并求出最低造价.



















(1)求

(2)当



某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.


(1)写出图(1)表示的市场售价与时间的函数关系式
;写出图(2)表示的种植成本与时间的函数关系式
;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/
kg,时间单位:天.)


(1)写出图(1)表示的市场售价与时间的函数关系式


(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/
