- 集合与常用逻辑用语
- 函数与导数
- + 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).
其中正确命题的序号是____________.(请把正确命题的序号全部写出来)
①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).
其中正确命题的序号是____________.(请把正确命题的序号全部写出来)
设函数f(x)=x|x|+bx+c(x∈R)给出下列4个命题:
①当b=0,c=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个实数根.
上述命题中,所有正确命题的个数是__________
①当b=0,c=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个实数根.
上述命题中,所有正确命题的个数是
若函数
满足
(其中
不同时为0),则称函数
为“准奇函数”,称点
为函数
的“中心点”.现有如下命题:
①函数
是准奇函数;
②函数
是准奇函数;
③若准奇函数
在
上的“中心点”为
,则函数
为
上的奇函数;
④已知函数
是准奇函数,则它的“中心点”为
;
其中正确的命题是 .(写出所有正确命题的序号)






①函数

②函数

③若准奇函数





④已知函数


其中正确的命题是 .(写出所有正确命题的序号)
函数
的定义域为R,若
是奇函数,
是偶函数. 下列四个结论:
①
②
的图像关于点
对称
③
是奇函数 ④
的图像关于直线
对称
其中正确命题的个数是



①




③



其中正确命题的个数是
A.1 | B.2 | C.3 | D.4 |
对于定义在
上的函数
,有下述四个命题,其中正确命题为( )
①若函数
是奇函数,则
的图象关于点
对称;
②若对
,有
,则
直线
对称;
③若函数
关于直线
对称, ,则
为偶函数;
④函数
与函数
直线
对称.


①若函数



②若对




③若函数



④函数



A.①②④ | B.①③④ | C.②④ | D.①③ |