- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果偶函数
在
上是增函数且最小值是2,那么
在
上是( )




A.减函数且最小值是2 |
B.减函数且最大值是2 |
C.增函数且最小值是2 |
D.增函数且最大值是2 |
科学家发现某种特别物质的温度
(单位:摄氏度)随时间
(时间:分钟)的变化规律满足关系式:
(
,
).
(1)若
,求经过多少分钟,该物质的温度为
摄氏度;
(2)如果该物质温度总不低于
摄氏度,求
的取值范围.





(1)若


(2)如果该物质温度总不低于


已知函数
.
(1)若函数
是R上的奇函数,求实数a的值;
(2)若对于任意
,恒有
,求实数a的取值范围;
(3)若
,函数
在区间[0,2]上的最大值为4,求实数a的值.

(1)若函数

(2)若对于任意


(3)若


设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数
(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.

(1)证明f(x)在区间(α,β)上是增函数;
(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.