- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的偶函数f(x),当x∈[1,2]时,f(x)<0,且f(x)为增函数,给出下列四个结论:
①f(x)在[-2,-1]上单调递增;
②当x∈[-2,-1]时,有f(x)<0;
③f(x)在[-2,-1]上单调递减;
④|f(x)|在[-2,-1]上单调递减.
其中正确的结论是__________(填上所有正确的序号).
①f(x)在[-2,-1]上单调递增;
②当x∈[-2,-1]时,有f(x)<0;
③f(x)在[-2,-1]上单调递减;
④|f(x)|在[-2,-1]上单调递减.
其中正确的结论是__________(填上所有正确的序号).
已知
是定义在
上的奇函数,且
,若对任意
,都有
.(1)用定义证明函数
在定义域上是增函数;
(2)若
,求实数
的取值范围;
(3)若不等式
对所有
都恒成立,求实数
的取值范围.






(2)若


(3)若不等式



已知函数
是定义在
上的奇函数,且当
时,
;
(1)求函数
在
上的解析式并画出函数
的图象(不要求列表描点,只要求画出草图)
(2)(ⅰ)写出函数
的单调递增区间;
(ⅱ)若方程
在
上有两个不同的实数根,求实数
的取值范围。




(1)求函数



(2)(ⅰ)写出函数

(ⅱ)若方程



