- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知E,F,G,H分别为正方形ABCD各边上的动点,且始终保持AE=BF=CG=DH,点M,N,P,Q分别是EH、EF、FG、HG的中点.当AE从小于BE的变化过程中,若正方形ABCD的周长始终保持不变,则四边形MNPQ的面积变化情况是()


A.一直增大 |
B.一直减小 |
C.先增大后减小 |
D.先减小后增大 |
如图,在△ABC中,AB>AC,D,E分别是AB,AC上的点,将△ADE沿线段DE翻折,使点A落在边BC上,记为A′.若四边形AD A′E是菱形,则下列说法中正确的是


A.DE是△ABC的中位线 |
B.AA′是BC边上的中线 |
C.AA′是BC边上的高 |
D.AA′是△ABC的角平分线 |
如图,在菱形ABCD中,对角线AC,BD分别等于8和6,将BD沿CB的方向平移,使D与A重合,B与CB延长线上的点E重合,则四边形AECD的面积等于 ▲ .

观察探究,完成证明和填空.
如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
(1)求证:四边形EFGH是平行四边形;

(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:

当四边形ABCD变成平行四边形时,它的中点四边形是______;
当四边形ABCD变成矩形时,它的中点四边形是______;
当四边形ABCD变成菱形时,它的中点四边形是______;
当四边形ABCD变成正方形时,它的中点四边形是______;
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
(1)求证:四边形EFGH是平行四边形;

(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:

当四边形ABCD变成平行四边形时,它的中点四边形是______;
当四边形ABCD变成矩形时,它的中点四边形是______;
当四边形ABCD变成菱形时,它的中点四边形是______;
当四边形ABCD变成正方形时,它的中点四边形是______;
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
如图,四边形ABCD为矩形,AB=4,AD=3,动点M从D点出发,以1个单位/秒的速度沿DA向终点A运动,同时动点N从A点出发,以2个单位/秒的速度沿AB向终点B运动.当其中一点到达终点时,运动结束.过点N作NP⊥AB,交AC于点P连结MP.已知动点运动了x秒.

(1)请直接写出PN的长;(用含x的代数式表示)
(2)试求△MPA的面积S与时间x秒的函数关系式,写出自变量x的取值范围,并求出S的最大值;

(1)请直接写出PN的长;(用含x的代数式表示)
(2)试求△MPA的面积S与时间x秒的函数关系式,写出自变量x的取值范围,并求出S的最大值;
如图,P为正方形ABCD的边BC上一动点(P与

A. C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M. |
(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长。

如图,在直角梯形ABCD中,AD∥BC,∠B = 90º,AD = 24厘米,AB = 8厘米,BC = 30厘米,动点P从A开始沿AD边向D以每秒1厘米的速度运动,动点Q从点C开始沿CB边向B以每秒3厘米的速度运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.
设运动时间为t秒.
(1) 当t在什么时间范围时,CQ>PD?
(2) 存在某一时刻t,使四边形APQB是正
方形吗?若存在,求出t值,若不存在,请说明理由.
设运动时间为t秒.
(1) 当t在什么时间范围时,CQ>PD?
(2) 存在某一时刻t,使四边形APQB是正
方形吗?若存在,求出t值,若不存在,请说明理由.

如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.

已知,点P是正方形ABCD内的一点,连PA、PB、P
A. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长. (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. ![]() |
阅读材料:
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.
