- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形ABCD中,E为直线AB上的动点(不与A、B重合),作射线DE并绕点D逆时针旋转45°,交直线BC于点F,连接EF.
探究:当点E在边AB上,①求证:EF=AE+CF.
应用:(1)当点E在边AB上,且AD=2时,求△BEF的周长;
(2)当点E在BA延长线上时,判断EF,AE,CF三者的数量关系,并说明理由.
探究:当点E在边AB上,①求证:EF=AE+CF.
应用:(1)当点E在边AB上,且AD=2时,求△BEF的周长;
(2)当点E在BA延长线上时,判断EF,AE,CF三者的数量关系,并说明理由.

阅读下面材料:
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
操作步骤 | 作法 | 由操作步骤推断(仅选取部分结论) |
第一步 | 在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2 | (i)△EAF≌△BAF(判定依据是①); (ii)△CEF是等腰直角三角形; (iii)用含a1的式子表示a2为②: |
第二步 | 以CE为边构造第二个正方形CEFG; | |
第三步 | 在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3: | (iv)用只含a1的式子表示a3为③: |
第四步 | 以CH为边构造第三个正方形CHIJ | |
这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④ |
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).

如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBn∁n,则A3的坐标为____ ,B5的坐标为_____ .

如图,在正方形ABCD中,点E、F分别在边BC和CD上,且BE=CF,连接AE、BF,其相交于点G,将△BCF沿BF翻折得到△BC′F,延长FC′交BA延长线于点H.
(1)①求证:AE=BF;
②猜想AE与BF的位置关系,并证明你的结论;
(2)若AB=3,EC=2BE,求BH的长.
(1)①求证:AE=BF;
②猜想AE与BF的位置关系,并证明你的结论;
(2)若AB=3,EC=2BE,求BH的长.

如图,已知正方形
的边长是
,
,将
绕点
顺时针旋转,它的两边分别交
于点
,
是
延长线上一点,且始终保持
.
(1)求证:
;
(2)求证:
;
(3)当
时:
①求
的值;②若
是
的中点,求
的长.










(1)求证:

(2)求证:

(3)当

①求





如图,做边长为l的正方形ABCD,再以正方形ABCD的边AB为对角线做第2个正方形AEBO1,再以边BE为对角线做第3个正方形EFBO2…如此做下去,则所做的第2019个正方形的面积为______.

如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=
HM;
③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为( )

①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=

③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为( )

A.①③ | B.①② | C.②③ | D.①②③ |
在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点

A. (1)①依题意补全图1; ②若∠PAB=20°,求∠ADF的度数; (2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a的代数式表示) (3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明. |

如图1,在矩形ABCD中,E是AD上的一点,点P从点B沿折线BE﹣ED﹣DC,运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度,如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,以下结论:①BC=10;②cos∠ABE=
;③当t=12时,△BPQ是等腰三角形;④当14≤t≤20时,y=110﹣5t,其中正确的有( )



A.1个 | B.2个 | C.3个 | D.4个 |