- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- + 正方形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空自部分面积为10.5,则阴影部分面积为______ .

如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.

阅读下面的例题及点拨,补全解题过程(完成点拨部分的填空),并解决问题:例题:如图1,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°
点拨:如图2,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连结EM,易证△ABM≌△EBM( ),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠ =∠ ;
由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠ .
又因为∠2+∠6=120,所以∠5+∠6=120°,所以∠AMN=60°.
问题:如图3,四边形ABCD的四条边都相等,四个角都等于90°,M是BC边上一点(不含端点B,C),N是四边形ABCD的外角∠DCH的平分线上一点,且AM=MN.求∠AMN的度数.
点拨:如图2,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连结EM,易证△ABM≌△EBM( ),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠ =∠ ;
由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠ .
又因为∠2+∠6=120,所以∠5+∠6=120°,所以∠AMN=60°.
问题:如图3,四边形ABCD的四条边都相等,四个角都等于90°,M是BC边上一点(不含端点B,C),N是四边形ABCD的外角∠DCH的平分线上一点,且AM=MN.求∠AMN的度数.

正方形 A BCD 中,对角线 A C、BD 相交于点 O,DE 平分∠A DO 交 AC 于点 E ,把
A DE 沿AD 翻折,得到
A DE’,点 F 是 DE 的中点,连接 A F、BF、E’F,若 AE=
.
下列结论 :①AD 垂直平分 EE’,② tan∠ADE =
-1,
③ C
A DE - C
ODE =2
-1, ④ S四边形AEFB=
其中结论正确的个数是 ( ) .




下列结论 :①AD 垂直平分 EE’,② tan∠ADE =

③ C




其中结论正确的个数是 ( ) .

A.4 个 | B.3 个 | C.2 个 | D.1 个 |
在正方形
中,点
是对角线
上的动点(与点
不重合),连接
.

(1)将射线
绕点
顺时针旋转45°,交直线
于点
.
①依题意补全图1;
②小研通过观察、实验,发现线段
,
,
存在以下数量关系:
与
的平方和等于
的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:
想法1:将线段
绕点
逆时针旋转90°,得到线段
,要证
的关系,只需证
的关系.
想法2:将
沿
翻折,得到
,要证
的关系,只需证
的关系.
…
请你参考上面的想法,用等式表示线段
的数量关系并证明;(一种方法即可)
(2)如图2,若将直线
绕点
顺时针旋转135°,交直线
于点
.小研完成作图后,发现直线
上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.






(1)将射线




①依题意补全图1;
②小研通过观察、实验,发现线段






想法1:将线段





想法2:将





…
请你参考上面的想法,用等式表示线段

(2)如图2,若将直线





如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是( )


A.1![]() | B.3![]() | C.6![]() | D.![]() |