- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- + 正方形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,先将正方形纸片对折,折痕为EF,再把点C折叠到EF上,折痕为DN,点C在EF上的对应点为M,则下列结论中(1)AM=AB;(2)∠MCE=15°;(3)△AMD是等边三角形;(4)CN=NE,正确的个数有( )


A.1个![]() | B.2个![]() | C.3个![]() | D.4个 |
如图,在矩形ABCD中,点E是BC上的一个动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,
(1)试证明:CH=EF+EG
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则CH、EF、EG之间有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想
(1)试证明:CH=EF+EG
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则CH、EF、EG之间有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想

如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是( )


A.0 | B.4 | C.6 | D.8 |
如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形从图示位置开始,沿着正方形ABCD的边AB→BC→CD→DA→AB连续地翻转,那么这个小正方形第2018次翻转到箭头与初始位置相同的方向时,小正方形所处的位置( )


A.在AB边上 | B.在BC边上 | C.在CD边上 | D.在DA边上 |
如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是( )


A.![]() | B.![]() | C.1-![]() | D.![]() |