- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- + 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,点E在BC上,且AE=CE,请仅用一把无刻度的直尺按要求画出图形.
(1)在图(1)中,画出∠DAE的角平分线;
(2)在图(2)中,以AE为边画一个菱形.

(1)在图(1)中,画出∠DAE的角平分线;
(2)在图(2)中,以AE为边画一个菱形.

在矩形
中,点
、
、
、
分别是边
、
、
、
的中点,顺次连接
所得的四边形我们称之为中点四边形,如图.

(1)求证:四边形
是菱形;
(2)设
的中点四边形是
,
的中点四边形是
….
的中点四边形是
,那么这些中点四边形形状的变化有没有规律性? (填“有”或“无”)若有,说出其中的规律性 ;
(3)进一步:如果我们规定:矩形
,菱形
,并将矩形
的中点四边形用
表示;菱形的中点四边形用
表示,由题(1)知,
,那么
.











(1)求证:四边形

(2)设






(3)进一步:如果我们规定:矩形







如图,在矩形ABCD的外侧作等腰△ABE,AE=BE,连接ED、EC.

(1)求证:ED=EC.
(2)用无刻度的直尺作出△EDC中DC边上的高EH.(不写作法,保留作图的痕迹)

(1)求证:ED=EC.
(2)用无刻度的直尺作出△EDC中DC边上的高EH.(不写作法,保留作图的痕迹)
如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.

已知:如图,在矩形ABCD中,E ,F ,G ,H分别为边AB, BC ,CD, DA的中点.若AB=2,AD=4,则图中阴影部分的面积为 ( )


A.5 | B.4.5 | C.4 | D.3.5 |